

Meridian Road (North) Corridor Plan
US 24 to Hodgen Road
for
El Paso County Department of Public Service -
Transportation Division \&
Pikes Peak Rural Transportation Authority

prepared by
URS

Meridian Road (North) Corridor Plan

US 24 to Hodgen Road
for
El Paso County Department of Public Service-
Transportation Division \&
Pikes Peak Rural Transportation Authority

prepared by
URS

Table of Contents

10 Introduction 1
1.1 Project Overview

\qquad 1
1.1.1. Analysis \& Implementation Plan Overview

1.3 Corridor Preservation Overview| ... 1 |
| :--- |
| \ldots |

1.4 Access Management Overview. $\begin{array}{r}. . .1 \\ \ldots \\ \hline\end{array}$
2.0 Master Plan Conformanc 2 2
2.1 El Paso County Policy Plan
2.1 El Paso County Policy Plan 2.2 The EI Paso County Major Transportation Corridors Plan (MTCP) $\begin{array}{r}. . \\ \hline \\ \hline\end{array}$ $\begin{array}{r}. . \\ \hline \\ \hline\end{array}$

2.3 The Black Forest Preservation Plan (BFPP)\begin{tabular}{l}
. .3

...

\hline

2.4 Black Forest Preservation Plan - Trails Addend

... .4

....

\hline
\end{tabular}

2.5 Falcon/Peyton Comprehensive Plan (FPCP)
$\begin{array}{r}5 \\ \hline\end{array}$
2.7 Conclusion

3.0 Traffic7
3.1 Traffic Analysis 7
3.1.1. Existing Traffic Volumes $\ldots7$
3.1.2. Existing Traffic Characteristics. $\begin{array}{r}. . . \\ \hline\end{array}$
3.1.4. Existing Traffic Operations $\ldots . . .9$
3.1.5. Existing Deficiencies 11
3.2 Design Year 2035 Traffic Volume Projections
3.2 Design Year 2035 Traffic Volume Projections 11
.. .14
3.2.1. Design Year 2035 Classification And Lane Requirements
3.2.1. Design Year 2035 Classification And Lane Requirements 14
32.2. Design Year 2035 Signalized Interse 14
3.2.4. Design Year 2035 Un-Signalized Intersection Operations 16
3.3 Intersections/Access16
.. .16
3.3.1. Auxiliary Lane Requirements 17
3.4 Safety Issues 18
3.4.1. Existing Condition...........
3.4.1. Existing Condition...........18
3.4.2. Crash Data
20
4.0 Utilities.
20
4.1 Existing Utilities 20
4.1.1. Potential Utility Conflicts20
34
4.2 Existing Utility Easements

.36
.36

4.4 Utility Relocation Cost Estima
4.4 Utility Relocation Cost Estima
5.0 Drainage 39
5.1 Methodology 39
5.1.1. Hydrology 39
5.2 Meridian Road Major Drainage Basins 40
5.2.1. Falcon Basin (Sta. 0+00 to 177+00) 40
5.2.2. Bennett Ranch Basin (Sta. 177+00 to 268+50) 41 42
5.2.3. Upper Black Squirrel Creek Basin (Sta. 268+50 to 406+50)
5.2.3. Upper Black Squirrel Creek Basin (Sta. 268+50 to 406+50)
5.2.5. West Kiowa Creek Basin (Sta. 498+00 to Sta. 524+56) 43
44
5.3 Drainage Conclusions 44
6.0 Geotechnical \& Subsurface Investigation 55
6.1 Proposed Construction 55
6.2 Existing Ste Conditions 55
55
. 3 Subsurface Conditions 55
6.3.2. Subgrade Conditions
$\begin{array}{r}. .59 \\ \hline 9\end{array}$
6.4 Site Grading 59
6.5 Pavement Design59
6.5.2. Design Traffic 59
59
6.5.3. Pavement Sections 59
6.5.4. Expansive Soil Considerations 61
6.5.5. Pavement Overlay
.61
. .61
.61
. .61
6.5.7. Subgrade Preparation 61
6.5.8. Pavement Materials61
6.6 Subsurface Drains 61
Concrete Box Culvert Foundations
Concrete Box Culvert Foundations61
7.0 Environmenta 62
7.1 Methodolog 62
7.2 Hazardous Materials
62
62
7.2.1. Database Search62
7.2.3. Conclusion. 63
7.3 Cultural Resources 63
7.4 Section 4f (Parks and Recreation) 63
.5 Waters of the 63
7.5.2. Other Waters of the U.S 63
6 Flora and Fauna 63
7.6.1. Threatened and Endangered Species Habitat \& Species of Concern
7.6.1. Threatened and Endangered Species Habitat \& Species of Concern 63
8.0 Analysis \& Implementation Plan 66
8.1 Concept 66
8.2 Constraints and Existing Deficiencies
8.2 Constraints and Existing Deficiencies 66
Typical Section67
67
8.4.1. Typical Section - Urban Principal Arterial (6-lane) 67
8.4.2. Rural Principal Arterial (4-lane) 67
8.4.3. Rural Minor Arterial (2-lane) 68
8.4.4. Unterim Road Sections.68
8.5 Analysis 68
.74
8.6 Cost Estimates 74
.78
8.8 Implementation Plan 78
78

8.9 Conclusion Construction Options | .78 |
| :--- |

9.0 Corridor Preservation 99
9.1 Right-of-way and Easement Requirements 99
9.2 Intersection Related Right-of-way 99
99
9.3 Permanent and Temporary Easements 99
99
9.4 Trail Easements99
9.6 Future Development 100
0.0 Access Management 117
10.1 Existing Conditions 117
10.1.1. Roadway Acces 118
10.2 Guidelines \& Design Criteria ${ }^{1}$ 118
10.2.1. Basis for Planning 118
10.2.2. Access Design Guidelines 118
10.2.3. Roadway Functional Classifications and Urban/Rural Designations.............
10.2.4. Rural and Urban Principal Arterial and Rural Minor Arterial Access Criteria. 119
120
10.3.1. Access Management Plan Implementation 120
10.3.2. Future Access. 120
11.0 References 138
Table of Tables
Table 1. Existing Traffic Characteristics
Table 2. Existing Signalized Intersection Operations Summary 10
Table 3. Existing Un-Signalized Intersection Operations Summary 10
Table 4. FDOT Generalized Level of Service Table 14
Table 5. Design Year 2035 Signalized Intersection Operations Summary 14
Table 6. Design Year 2035 Un-Signalized Intersection Operations Summary 15
Table 7. Auxiliary Turn Lane Requirements.16
Table 8. Full Movement Intersection Spacing Deficiencies 17
Table 9. Most Frequently Occurring Crash Types from 2001-2005 19
Table 10. Existing Utility Companies 20
Table 11. Existing Utilities 31
Table 12. Existing Utility Easements 34
Table 13. Estimated Utility Relocation Costs by Station 36
Table 14. Estimated Utility Relocation Cost by Utility Company 38
Table 14. Flow Class Estimate 39
Table 15. Crossings, Basin Areas and Estimated Flows 40
Table 16. Proposed Channel Crossings 41
Table 17. Bennett Ranch Basin Crossings 42
Table 18. Upper Black Squirrel Creek Basin Crossings 43
Table 19. East Kiowa Creek Basin Crossings 44
Table 21. Pavement Boring Locations 55
Table 22. 20-Year Equivalent Single Axle Loads 59
Table 23. Preliminary Pavement Sections - Woodmen Road to Hodgen Road * 60
Table 24. Pavement Sections - US 24 to Woodmen Road * 60
Table 25. Hazmat Sites 62
Table 26. Threatened \& Endangered Fauna 64
Table 27. Known Species 65
Table 28. MTCP Road Classification (Based on 2030 Projected Traffic) 66
Table 29. Design Road Classification Based on 2035 Projected Traffic 67
Table 30. Key Design Criteria 67
Table 31. Proposed Construction Phasing for the Meridian Road Corridor. 78
Table 32. Required Right-of-way along Meridian Road 99
Table 33. Estimated Right-of-way and Easement Needs 111
Table 34. Existing Public Roadway Access to Meridian Road 117
Table 35. Summary of Existing Driveway Access to Meridian Road 118
Table 36. Access Point Identification System120
Table 37. Recommended Access Changes 127
Table of Figures
Figure 1. Project Area 1
Figure 2. Small Area Plan Boundaries
Figure 3. Existing (2007) Traffic Volumes. 8
Figure 4-1. Design Year (2035) Traffic Volumes - US 24 to Antler Ridge Road 12
Figure 4-2. Design Year (2035) Traffic Volumes - Ayer Road to Hodgen Road 13
Figure 5. Crashes by Nearest Cross Street. 19
Figure 6-1 thru 6-10. Existing Utilities 21
Figures 7-1 through 7-10. Drainage 45
Figures 8-1 through 8-3. Exploratory Borings 56
Figure 9-1. Typical Section - Ultimate (Widen to Inside) \& Interim (No Action) 69
Woodmen Hills) 70
Figure 9-3. Typical Section - Ultimate 6-lane Urban \& Interim Build Outer Two Lanes (Woodmen Hills to Rex). 71
Figure 9-4. Typical Section - Ultimate 4-lane Rural \& Interim Grade and Pave Only (Rex to Latigo). 72
Figure 9-5. Typical Section - Ultimate 2-lane Rural \& Interim Full Ultimate (Latigo to Hodgen) 73
Figure 10. Cumulative Corridor Costs 75
Figure 11. Minimum Cost Estimate 76
Figure 12. Maximum Cost Estimate 77
Figure 13-1 through 13-19. Recommended Road Section Plan and Profile. 80
Figures 14-1 through 14-10. Right of Way and Easements. 101
Figures 15-1 through 15-10. Access Management 128

Acronyms \& Abbreviations

AASHTO	American Association of State Highway and Transportation Officials
ac	acre
ADT	Average Daily Traffic
AMP	Access Management Plan
ASTM	American Society for Testing and Materials
BFPP	Black Forest Preservation Plan
BIOTICS	Biodiversity Tracking and Conservation System
BMP	Best Management Practices
BR	Bridge
BS	Black Squirrel
CBC	Concrete Box Culvert
CBR	California Bearing Ratio
CDOT	Colorado Department of Transportation
CDOW	Colorado Division of Wildlife
CDPHE	Colorado Department of Public Health and Environment
CERCLIS	Comprehensive Environmental Response, Compensation, and Liability Information System
cfs	cubic feet per second
CMP	Corrugated Metal Pipe
CNHP	Colorado Natural Heritage Program
CORRACTS	Corrective Action Report
CPP	Corridor Preservation Plan
CSP	Corrugated Steel Pipe
DBPS	Drainage Basin Planning Study
DCM	Drainage Criteria Manual
DOT	El Paso County Department of Transportation
EB	Eastbound
ECM	Engineering Criteria Manual
EDR	Environmental Data Resources
ERNS	Emergency Response Notification System
ESAL	Equivalent Single Axle Loads
FDOT	Florida Department of Transportation
FEMA	Federal Emergency Management Agency
FIRM	Flood Insurance Rate Maps
FPCP	Falcon/Peyton Comprehensive Plan
f	feetfoot
HBP	Hot Bituminous Pavement
HCK	Highway Capacity Manual
HMA	Hot Mix Asphalt
HOV	High Occupancy Vehicle
in	inch
kV	kiloVolt
LAT	Lateral
LGQ	Large Quantity Generator
LOS	Level of Service
LP	Low Point
LT	Left

LUST	Leaking Underground Storage Tank
MDDP	Master Development Drainage Plan
mph	miles per hour
MTCP	Major Transportation Corridors Plan
MTTF	Major Thoroughfare Task Force
MVEA	Mountain View Electric Association
NA	Not Applicable
NB	Northbound
NEPA	National Environmental Policy Act
NFRAP	No Further Remedial Action Planned
NRCS	Natural Resources Conservation Service
OPS	Colorado Department of Labor and Employment, Division of Oil and Public Safety
PCA	Potential Conservation Area
PMJM	Preble's Meadow Jumping Mouse
PPACG	Pikes Peak Area Council of Governments
PPRTA	Pikes Peak Regional Transportation Authority
psi	Pounds per square inch
Q	Flow
R-B	Rural Highway
RCBC	Reinforced Concrete Box Culvert
RCP	Reinforced Concrete Pipe
RCRA	Resource Conservation and Recovery Act
Rd	Rood
REC	Recognized Environmental Conditions
RI/RO	Right-in/Right-out
ROW	Right-of-way
RT	Right
SAP	Small Area Plan
SB	Southbound
sec/veh	seconds per vehicle
SH	State Highway
SHPO	State Historic Preservation Office
SPILLS	State reported hazardous waste spills database
SQG	Small Quantity Generator
Sta	Station
T\&E	Threatened and Endangered Species
TIS	Traffic Impact Study
TSDF	Treatment, Storage, and Disposal Facility
USACE	United States Army Corps of Engineers
USDA	United States Department of Agriculture
USFWS	United States Fish and Wildlife Service
USGS	United States Geological Survey
UST/AST	Underground Storage Tank / Advanced Secondary (Wastewater) Treatment
VCP	Voluntary Cleanup Program
v/c	volume to capacity ratio
vph	vehicles per hour
WB	Westbound

1.0 Introduction

1.1 Project Overview

The Meridian Road Corridor has emerged as a regional transportation priority as identified in the Pikes Peak Area Council of Governments' Regional Transportation Plan and the El Paso County Major Transportation Corridors Plan (MTCP). Figure 1 shows the study area for the Meridian Road (North) Improvements project. The primary purpose of this project phase is to verify MTCP requirements and identify capacity and safety improvements for Meridian Road within the MTCP functional classification requirements. This plan considers the ultimate long-term improvements and also recommends interim phases of improvements as warranted by technical findings of the studies and funding limitations. It is bounded by US 24 to the south and Hodgen Road to the north. A prioritized schedule shows the recommended implementation for construction improvements along the corridor.

The MTCP also includes specific recommendations regarding transportation modes for the corridor. It identifies Meridian Road (North) as a recommended bike route and a potentia rapid transit corridor, and it includes a planned park and ride near the intersection of Meridian Road and US 24 This project does not provide rapid transit planning, but it does determine what is required to accommodate this type of facility in the future.

1.1.1. Project Goals and Objectives

The project will increase capacity and provide safety improvements for Meridian Road from Woodmen Road to Rex Road. The goal is to provide safety enhancement improvements from Rex Road to Hodgen Road for functional classification referenced in the MTCP. The corridor plan is to meet the following objectives:

- Provide safety and capacity improvements to accommodate anticipated growth.
- Provide improvements addressing intersection safety, operation, and sight distance.
- Address access throughout the corridor and identify related improvements.
- Consider commercial truck and transit bus route design features.
- Plan and preserve bike/trail route along the corridor.
- Re-design road to current engineering standards pursuant to minimum El Paso County standards including alignment, typical section, and grade.
- Address stormwater and associated water quality issues.
- Verify current assumptions regarding functional classification for the roadway and other uses within the corridor to best serve the community.
- Preserve recent Meridian Road improvements as much as possible.

1.2 Analysis \& Implementation Plan Overview

The analysis process is the key to identifying the recommended road section and determining construction phasing based on need and available construction funding. The Engineering Criteria Manual (ECM) standards for the applicable MTCP road classifications establish the starting point of the analysis. Chapters 2 through 7 address factors that are integral to the development of the ultimate road design, including traffic projections; right-of-way and easement needs; crash history; drainage and environmental impacts; and geotechnical conditions. Additionally, the conceptual plan for the corridor is compared to applicable master plans to ensure compliance with long-term goals and recommendations already established by the County. Chapter 8 presents the conceptual roadway design, cost estimate, and construction implementation schedule.

1.3 Corridor Preservation Overview

The Corridor Preservation Plan (Chapter 9) identifies the right-of-way and easement needs required to construct the recommended road section. Existing right-of-way along the corridor varies from 60 ft to 210 ft . The recommended right-of-way requirements along Meridian Road are 210 ft (US 24 to Rex Road) and 180 ft (Rex Road to Hodgen Road). This section addresses permanent, temporary, trails, and utility easements.

1.4 Access Management Overview

The Access Management Plan (Chapter 10) documents existing access points along the Meridian Road corridor, identifies future access requirements, and compares both to current County standards. This section also shows recommended access changes along the corridor.

2.0 Master Plan Conformance

The Master Plan Conformance task is to ensure the Meridian Road Corridor conforms with the long-range goals described in applicable elements of the El Paso County Master Plan guidance documents. The El Paso County Policy Plan (1998) provides broad guidance to ensure consistency across the county, while the El Paso County Master Plan provides more locally specific and detailed guidance through the Small Area Plans (SAP) and Topical Elements components. The applicable elements of the Master Plan include the Major Transportation Corridors Plan (2004); Black Forest Preservation Plan (1987); Black Forest Preservation Plan - Trails Addendum (1999); Falcon/Peyton Comprehensive Plan Update (2008); and the El Paso County Parks, Trails \& Open Space Master Plan (2005). The intent of these plans is to outline policies and goals for overall land use planning that includes an effective transportation system that serves a balance of providing access to land uses and mobility to the traveling public. These documents support each other in their recommendations to promote a variety of land use types and densities along the corridor ranging from mixed urban uses at the south end to rural residential development on the north end and to accommodate needed transportation improvements. The long-range goals related to transportation and traffic in the various planning documents are excerpted below. The applicable excerpts should serve as guidance that, when adhered to, ensure that the project meets previously established goals and policies of the County.

2.1 El Paso County Policy Plan

The El Paso County Policy Plan identifies policies and goals describing an effective transportation system that serves a balance of providing access to land uses and mobility to the traveling public. This plan was that serves a balance of providing access to land uses and mobility to the traveling public. This plan was median-divided 4 -lane collector that will be developed into a corridor with multiple functional classifications, requiring up to 200 ft of right-of-way. Key planning issues and the policies applicable to Meridian Road are summarized below.

ISSUE 9.1 Plan for the mobility needs of the County
Goal 9.1 Plan, develop and maintain a safe and efficient transportation system to meet the present and future mobility needs of people, goods, materials and services.

- Policy 9.1.1 Identify and preserve the functional integrity of the corridors necessary to meet the County's potential future surface transportation needs
- Policy 9.1.3 Achieve compatibility between transportation facilities and adjacent land areas through comprehensive planning.
- Policy 9.1.4 Coordinate and integrate the planning and development of transportation modes Policy 9.1 .4 Coordinate and integrate the planning highways, public transit, bikeways, pedestrian facilities, equestrian trails, railroads, airports, ride-sharing, car-pooling and telecommunications networks with Pikes Peak Area Council of Governments (PPACG) and the County's municipalities and military installations.
- Policy 9.1.5 Coordinate the County's transportation system with the transportation systems of neighboring counties.
- Policy 9.1.6 Balance the need for regional mobility with demands for local access onto major transportation corridors.
- Policy 9.1.7 Maximize the efficiency of the existing transportation system through efficient traffic management and operations techniques including signalization and additional turning lanes which help to regulate traffic flow and thereby increase capacity.

ISSUE 9.2 Promote Land Use Efficiency

Goal 9.2.1 Promote land use planning which maximizes transportation efficiency

- Policy 9.2.1 Encourage the development of major activity centers with regional multi-modal access.
- Policy 9.2.2 Require advance right-of-way preservation and/or dedication for transportation facilities as part of the land development process.
- Policy 9.2.3 Strictly limit direct access onto major transportation corridors in order to preserve their functional capacity
- Policy 9.2.4 Plan, build and manage the capacity of the roadway system to accommodate maximum expected land use densities.
- Policy 9.2.5 Evaluate land use patterns which place exceptionally large demands on the transportation systems and mitigate their impact.
- Policy 9.2.6 Encourage carefully-planned mixed-use developments which integrate vehicular and pedestrian transportation modes and which maximize the effective use of transportation infrastructure and parking areas.

ISSUE 9.3 Reduce Adverse Impacts to Air Quality and Traffic Congestion

Goal 9.3 Reduce the adverse environmental impacts of existing and future transportation systems through a combination of careful planning and mitigation techniques.

- Policy 9.3.1 Place a high priority on maintaining the environmental condition when planning or building roads.
- Policy 9.3.2 Place a high priority on those system improvements which will substantially reduce risks to public safety including but not limited to signalization and traffic controls.
- Policy 9.3.3 Encourage the identification, designation and preservation and enhancement of scenic transportation routes and vistas.
- Policy 9.3.4 Provide for noise attenuation and visual screening along major transportation corridors by incorporating techniques including setbacks, buffers, berms, and vegetation treatments
- Policy 9.3.5 Plan and provide for mitigation of secondary impacts of traffic congestion including the protection of air and water quality and drainage system enhancements

ISSUE 9.4 Address Funding Issues

Goal 9.4.1 Implement the planned transportation system in a coordinated and cost-effective manner utilizing a fair, equitable and sufficient method of funding.

- Policy 9.4.1 Base funding for transportation improvements and maintenance as much as possible on a user-pay system while recognizing the unique needs of the transit-dependent along with the indirect costs and benefits of transportation projects.
- Policy 9.4.2 Utilize transportation strategies designed to improve the efficiency of existing roadways prior to investing in system expansions or additions
- Policy 9.4.3 Adequately fund maintenance of existing and future transportation infrastructure to preserve the value of investments made.
- Policy 9.4.4 Encourage user-pay approaches to funding transportation system improvements and maintenance.
- Policy 9.4.5 Encourage processes by which development can contribute a reasonable and fair share toward necessary off-site transportation improvements.
- Policy 9.4.6 Place a high priority on financing transportation improvements which significantly reduce health and safety risks.

ISSUE 9.5 Support Alternative Modes

Goal 9.5.1 Promote the planning and development of transportation modes offering alternatives to single-occupant automobiles.

- Policy 9.5.1 Encourage the development of convenient, reasonably economic public transit options to serve the mobility needs of all segments of the population to and from major regional destinations.
- Policy 9.5.2 Encourage the development and maintenance of pedestrian and bicycle networks by identifying and setting aside corridors early in the planning process and by fully integrating these functions into land development plans.
- Policy 9.5.3 Encourage the use of high occupancy vehicles (HOV), buses, vans, carpools and rapid rail.
- Policy 9.5.5 Promote the development of park-and-ride areas to facilitate the use of alternative modes of transportation and coordinate the development of an intermodal system.
- Policy 9.5.7 Encourage inter-regional cooperation for the planning and development of alternative modes of transportation.

ISSUE 6.1 Effectively Manage Growth and Land Use Change

Goal 6.1.a Encourage patterns of growth and development which complement the regions' unique natural environments and which reinforce community character.
Goal 6.1.b Support growth and development in the unincorporated County in a manner which reasonably limits long term public costs, provides for the development of supporting infrastructure, preserves environmental quality, provides economic opportunities, and otherwise enhance the quality of life.

- Policy 6.1.5 Support the development of well-planned mixed use projects which promote all, or most, of the following objectives:
- Maximize the economy and efficiency of land use
- Preserve open space or natural areas.
- Integrate employment, housing, shopping, schools and other use
- Accommodate multi-modal transportation linkages.
- Allow for variations in design and character.
- Policy 6.1.9 Viable residential properties should be reasonably protected from the adverse impacts of major roadways and other potentially incompatible land uses.

ISSUE 6.2 Protect and Enhance Neighborhoods

Goal 6.2 Protect and Enhance Existing and Developing Neighborhoods.

- Policy 6.2.1 Fully consider the potential impact of proposed zone changes and development on the integrity of existing neighborhoods.
- Policy 6.2.4 Encourage use of innovative techniques to mitigate negative impacts of proposed land uses that differ from zoning in established neighborhoods.

ISSUE 6.3 Accommodate Sustainable Urban Density Development

Goal 6.3 Continue to support existing and carefully planned future urban density development in the unincorporated County, provided the requisite level of urban services is available or will be available in a timely fashion.

- Policy 6.3.1 Protect and enhance the viability of established urban density developments in unincorporated areas.
- Policy 6.3.4 Commercial, office, industrial, and residential development should be compatible with surrounding land uses in terms of scale, intensity and potential impacts.

ISSUE 6.4 Develop Rural Residential Communities

Goal 6.4 Develop and maintain rural residential areas in a manner which protects their integrity, addresses the carrying capacity of the natural environment and provides for an adequate level of non-urban facilities and services.

- Policy 6.4.1 Protect and sustain established viable rural residential areas where possible.
- Policy 6.4.2 Continue to define and limit the boundaries of rural residential areas primarily through the Small Area Planning process.
- Policy 6.4.6 Allow for the accommodation of necessary supporting commercial uses within or in proximity to rural residential areas in a manner that preserves the rural character of these areas.
- Policy 6.4.7 Accommodate limited very low impact business and other employment uses in rural residential developments if these serve to reduce overall levels of traffic in these areas and do not otherwise detract from the desired rural residential character, provided the requisite level of services is or will be available in a timely fashion. These uses should primarily serve the needs of local residents.

2.2 The El Paso County Major Transportation Corridors Plan (MTCP)

The El Paso County Major Transportation Corridors Plan (MTCP) provides the basis for establishing a meaningful county network, functional classification, and right-of-way requirements. The MTCP should be considered the starting point for corridor development in El Paso County as it identifies transportation needs, opportunities, and the best uses of limited resources for the next 25 years. The MTCP implementation policies include the following:

- Manage Traffic Congestion

Improve Transportation Safety

- Increase Multi-Modal Transportation Opportunities
- Intermodal Transportation Planning
- Preserve New and Expanded Roadway Corridors for Future Needs
- Develop Funding, Prioritization and Implementation Plan

The MTCP shows Meridian Road corridor improvements to be completed from Woodmen Road to Rex Road by 2015 and from Rex Road to Hodgen Road by 2025. These dates are preliminary points for discussion of implementation phasing. This schedule will be re-examined to assess the appropriate timing of the phases as needs and resources evolve.
The MTCP identifies Meridian Road as an eventual 6-lane principal arterial from US 24 to Rex Road, a 4lane principal arterial from Rex Road to Ayer Road, and a 2-lane minor arterial from Ayer Road to Hodgen Road. The MTCP also identifies Meridian Road as a potential El Paso County Rapid Transit Corridor from

US 24 to Hodgen Road and a recommended bike route from Woodmen Road to Hodgen Road. The MTCP also calls for the implementation of Intelligent Transportation Systems as feasible

2.3 The Black Forest Preservation Plan (BFPP)

The BFPP is a Small Area Plan (SAP) adopted in 1987 that encompasses the segment of Meridian Road from Rex Road north. It examines critical issues affecting land use, the environment, and transportation. The plan anticipates growth pressures and methods to mitigate growth impacts with the goal of protecting valuable environmental and community values. It notes a general policy of protecting the Timbered Area of the Forest to the extent possible when considering development or transportation improvements

The corridor is located in three of the ten BFPP planning units as shown below with the appropriate Land Use Scenario (shown South to North):

- \#9 Southeastern Mixed Use Area - from Stapleton Drive to Latigo Boulevard. The recommended scenario is phased development ranging from a balanced mix of urban density uses in the south to large single family residential lots in the north. The scenario also emphasizes preservation of adequate right-of-way and protection of the integrity of the corridor.
- \#1 The Timbered Area - from Latigo Boulevard to north of Murphy Road. The recommended scenario includes minimum five acre rural residential development and preservation of right-ofway for the eventual upgrade of Meridian Road.
- \#8 Meridian-Eastonville Corridor - from north of Murphy Road to Hodgen Road. The recommended scenario is large lot residential development (maximum overall density of one residence per five acres) and protection of right-of-way along Meridian Road.
The following excerpts include goals, policies, and proposed actions that have been developed by the El Paso County and residents of the Black Forest Planning Area:

1. Growth and Land Use

Goal 1.A Preserve and enhance the sensitive natural environment and unique community character of the Black Forest Planning Area

- Policy 1.3 Promote and plan a system of buffers around the Timbered Area, other planning units designated for low densities, and existing rural-residential subdivisions in which densities decrease between existing or planned development and these areas.

6. Transportation

Goal 6.A Provide an integrated transportation system which protects and compliments the environment and serves area and regional travel demands with safety, economy, efficiency and comfort.

- Policy 6.1 Design the transportation system so that disruption of sensitive environmental features, agricultural operations, and existing or platted residential areas is minimized.
- Policy 6.3 Upgrade primary transportation corridors (e.g. Shoup, Black Forest, Vollmer) in low density residential areas to promote safety. Where possible these improvements should be made within existing rights-of-way.
- Policy 6.4 Minimize direct access to the Timbered Area from any future expressway which may be constructed through the southern part of the planning area
- Policy 6.5 Reduce the need for single passenger vehicle trips by encouraging alternative modes of transportation, specifically ridesharing.
- Policy 6.7 Protect the right-of-way along Meridian Road for future upgrading, but encourage any north-south expressway to locate east of the tree line.
While the BFPP has language and a number of policies that address major roadways, this document does not contain a future roadway elements.

2.4 Black Forest Preservation Plan - Trails Addendum

The Trails Addendum was adopted in 1999 as an addendum to the 1987 BFPP. It provides planning guidelines for a network of non-motorized, multi-use trails within the Black Forest Planning Area, including a trail crossing on the north end of the project area. The network will be linked to the Regional Trai System as outlined in the El Paso County Master Plan for Parks, Trails and Open Space, and the City of Colorado Springs Open Space Master Plan. To some degree, this document has been supplanted by the El Paso County Department of Parks and Leisure Services Master Plan. (See Section 2.6 below) The Trails Addendum provides, in part, guidelines to developers for establishing trails within new subdivisions Goals and policies applicable to the Meridian Road corridor include the following

A.4.2 Roads as Trails

Goal A.4.2.A Integrate unpaved roads and trails adjacent to paved roads into the trail network

- Policy 1.4.2.b Support creation of a county-wide bicycle plan that identifies appropriate transportation corridors within Black Forest, then direct the DOT to add bike lanes on the identified roads as additional right-of-way is acquired, major road reconstruction is undertaken, and transportation enhancement funding permits.

2.5 Falcon/Peyton Comprehensive Plan (FPCP)

Like the BFPP, the Falcon/Peyton Comprehensive Plan (2008) is a SAP that addresses issues such as land use, the environment and transportation for an unincorporated area of the county and has been adopted as an amendment to the County Master Plan. The FPCP covers approximately 153 square miles extending from Meridian and Eastonville Roads on the west to McClelland Road on the east, and County Line Road on the north to S. Blaney Road on the south. The section of Meridian Road extending from US 24 to Latigo Boulevard is in the Falcon/Peyton Planning Area. The southern half of the corridor's surroundings is characterized as grasslands and the northern half is forestland. The FPCP includes a number of sub-areas with specific land use scenarios that include mixed use urban densities from US 24 north to the area of Rex Road and rural residential densities from that point northward.

The FPCP was recently revised and adopted in August 2008. The revision identifies potential commercial developments in four areas between Woodmen Road and Stapleton Drive, a segment of the corridor that has historically remained residential or agricultural. In addition to an existing approved development consisting of 578 dwelling units and 29.2 commercial acres, anticipated build-out adjacent to the Meridian Road corridor includes an estimated 230 acres of commercial development

The FPCP - Section 3.5 includes several transportation-related policies:

- Recommend land use patterns that make efficient use of existing transportation infrastructure and limit the cost of future extensions and upgrades.
- Mitigate congestion by providing flexibility for areas of higher population densities while protecting lower density areas from the negative effects of traffic.
- Prevent pedestrian hazards by identifying and prioritizing key pedestrian linkages and carefully integrating future urbanized areas with the existing network of traffic corridors.
- Promote alternative modes of transportation in order to reduce peak traffic, increase safety, and promote health.
- Enhance the future role of Meadow Lake Airport through the recommendation of compatible land uses.
- Balance long term transportation infrastructure needs with current requirements.
- Ensure the coordination of land use and transportation planning.
- Implement transportation infrastructure financing options which fairly allocate the cost of improvements to the source of existing or new demand for services.

2.6 El Paso County Parks, Trails \& Open Space Master Plan

The El Paso County Parks, Trails \& Open Space Master Plan identifies goals, objectives, and planned projects to expand the existing parks and trails system and to protect important natural areas and open spaces. The following excerpt identifies one of the County's goals and the Meridian Road design will incorporate the development of safe and accessible trails crossings

Goal Create a continuous system of regional trails.
The Trails Master Plan identifies the following trails and crossings in the project area

- The existing portion of the Palmer Divide Trail goes through Woodlake subdivision and crosses Meridian Road at Murphy Road
- A proposed Tier 2 County Regional Trail will cross Meridian Road just north or south of Rex Road, and
- The existing Rock Island Trail trailhead in the area of Meridian Road and US 24. Rock Island Trail is the eastern segment of the America the Beautiful Trail, a series of trails that begins in Peyton and extends west through Colorado Springs to Cripple Creek.

2.7 Conclusion

The intent of the referenced plans will be factored into the Meridian Road (North) Improvements project design. The long-term forecast for this area is high population growth. A well designed transportation system to accommodate the accompanying increased traffic is critical as the corridor provides regional mobility for area residents. Design criteria for the three functional classifications in the corridor will be applied, and the following key points will also be kept at the forefront of planning and design phases:

- Access must conform to functional classification.
- Right-of-way preservation is key to maintaining the corridor vision
- Planning and design must address maximum planned densities to accommodate the anticipated population growth.
- Multimodal considerations should include future transit, park-n-ride facilities, and trails

Figure 2. Small Area Plan Boundaries

3.0 Traffic

This section summarizes the existing traffic volumes, traffic characteristics, roadway characteristics, signalization, levels of service, and deficiencies along the Meridian Road Corridor.

3.1 Traffic Analysis

The existing conditions analysis year for this plan is 2007 and is based on traffic counts obtained along the Meridian Road Corridor in September 2007.

3.1.1. Existing Traffic Volumes

Twenty-four- hour machine classification traffic counts were conducted at the following locations:

- Meridian Road south of Hodgen Road
- Meridian Road south of Latigo Boulevard
- Meridian Road north of Rex Road
- Meridian Road between Stapleton Drive and Londonderry Drive
- Meridian Road between Woodmen Hills Drive and Stapleton Drive
- Meridian Road north of Woodmen Road

The existing average weekday traffic volumes along Meridian Road range from 1,900 vehicles/day south of Hodgen Road to 14,500 vehicles/day north of Woodmen Road.

Morning and evening peak period turning movement counts were conducted at the following intersections along Meridian Road:

- Rolling Thunder Way
- Woodmen Road
- Eastonville Road
- Owl Place
- Woodmen Hills Drive
- Stapleton Drive
- Londonderry Drive
- Indian Paint Trail
- Rex Road
- Ayer Road
- Latigo Boulevard
- Melba Road
- Milford Road
- Dawson Road
- Brinkerhoff road
- Up River Road
- Roslyn Road
- Murphy Road
- Woodlake Road
- Softwood Road
- Northcliff Road
- Hodgen Road

Figure 3 illustrates the existing average weekday traffic volumes and the a.m. and p.m. peak hour traffic volumes along Meridian Road. The average weekday traffic volumes were derived from data collected during the traffic count program and were rounded up to the nearest hundred. The peak hour traffic volumes were generated from the traffic count data and adjusted to balance traffic between intersections and rounded up to the nearest five

3.1.2. Existing Traffic Characteristics

The existing traffic characteristics for the corridor were estimated from the vehicle classification count data. These characteristics include the K-factor (percentage of the daily volume occurring during the peak hour), the D -factor (the directional distribution of the traffic) and the T -factor (the percentage of trucks in the peak hour). Table 1 summarizes the existing traffic characteristics.

As shown, the K-factors range from 0.082 to 0.091 in the a.m. peak hour and 0.091 to 0.106 in the p.m. peak hour. The D-factors range from 0.54 to 0.77 in the a.m. peak hour and 0.53 to 0.67 in the p.m. peak hour. The daily truck percentages range from 0.9 to 4.4%. The peak hour truck percentages range from 0.7 to 7.1% in the a.m. peak hour and 0.4 to 3.8% in the p.m. peak hour.

3.1.3. Existing Roadway Characteristics

As of the publication of this plan, Meridian Road does not connect to US 24 on the south end of the corridor. Meridian Road is currently a 4-lane principal arterial from just north of US 24 to just north of Stapleton Drive, a 2-lane principal arterial from just north of Stapleton Drive to Ayer Road and a 2-lane minor arterial from Ayer Road to Hodgen Road.
The posted speed limit on Meridian Road is 35 mph from US 24 to Woodmen Road and 55 mph from Woodmen Road to Hodgen Road. There are currently four signalized intersections along the corridor at Rolling Thunder Way, Woodmen Road, Woodmen Hills Drive and Stapleton Drive. All other intersections along the corridor are un-signalized.
The southern portion of the Meridian Road corridor, from US 24 to Rex Road, generally serves singlefamily medium to high density residential and commercial land uses. The northern portion of the corridor, from Rex Road to Hodgen Road, serves predominately single-family, low-density residential land uses.

3.1.4. Existing Traffic Operations

The existing levels of service for the intersections along Meridian Road were estimated using the peak hour traffic counts collected in the corridor and SYNCHRO 7 analysis software that is based on the procedures in the Highway Capacity Manual (HCM 2000), Transportation Research Board, 2000. The following subsections summarize the results of these evaluations.

Table 1. Existing Traffic Characteristics

				AM PEAK HOUR				PM PEAK HOUR			
Location	Daily Volume	Daily Truck \%	Directio n		D-factor	K-factor	Truck \%	Peak Hour Volume	D-factor	K-factor	Truck \%
Between Woodmen Road and Eastonville Road	14,502	3.0	$\begin{aligned} & \text { NB } \\ & \text { SB } \end{aligned}$	$\begin{aligned} & 282 \\ & 918 \end{aligned}$	0.77	0.083	3.8	$\begin{aligned} & 935 \\ & 514 \end{aligned}$	0.65	0.100	2.0
Between Woodmen Hills Drive and Stapleton Drive	13,156	4.4	$\begin{aligned} & \text { NB } \\ & \text { SB } \end{aligned}$	$\begin{aligned} & 303 \\ & 776 \end{aligned}$	0.72	0.082	7.1	$\begin{aligned} & 718 \\ & 520 \end{aligned}$	0.58	0.094	3.8
Between Stapleton Drive and Londonderry Drive	10,403	3.6	$\begin{aligned} & \hline \text { NB } \\ & \text { SB } \end{aligned}$	$\begin{aligned} & 302 \\ & 595 \end{aligned}$	0.66	0.086	3.5	$\begin{aligned} & 534 \\ & 417 \end{aligned}$	0.56	0.091	3.3
Between Rex Road and Ayer Road	4,748	0.9	$\begin{aligned} & \text { NB } \\ & \text { SB } \end{aligned}$	$\begin{aligned} & 123 \\ & 267 \end{aligned}$	0.68	0.082	0.7	$\begin{aligned} & 309 \\ & 158 \end{aligned}$	0.66	0.098	0.4
Between Ayer Road and Latigo Boulevard	5,389	2.3	$\begin{aligned} & \hline \text { NB } \\ & \text { SB } \end{aligned}$	$\begin{aligned} & 128 \\ & 347 \end{aligned}$	0.73	0.088	1.5	$\begin{aligned} & 374 \\ & 188 \end{aligned}$	0.67	0.104	0.7
Between Northcliff Road and Hodgen Road	1,865	2.6	$\begin{aligned} & \text { NB } \\ & \text { SB } \\ & \hline \end{aligned}$	$\begin{aligned} & 92 \\ & 77 \\ & \hline \end{aligned}$	0.54	0.091	1.8	$\begin{aligned} & 104 \\ & 93 \\ & \hline \end{aligned}$	0.53	0.106	1.0

[^0]
3.1.4.1 Existing Signalized Intersection Operations

Intersection capacity analyses for the signalized intersections along the Meridian Road corridor were performed for both the a.m. and p.m. peak hours using the traffic volumes illustrated on Figure 3. Table 2 summarizes the results of these analyses.

Table 2. Existing Signalized Intersection Operations Summary

Intersection Peak Hour PM Peak Hour VIC Average Delay LOS VIC Rolling Thunder Way 0.17 6.3 A 0.25 Delay	LOS					
	0.77	23.7	C	0.86	23.4	A
	0.44	7.3	A	0.63	7.1	A
Stapleton Drive	0.69	13.9	B	0.57	9.0	A

V/C = Maximum Volume-to-Capacity Ratio of all movements

Average Delay = Expressed in terms of seconds/vehicle
As shown in the table, all of the existing signalized intersections along the corridor are currently operating at LOS C or better during the a.m. and p.m. peak hours.

3.1.4.2.

Existing Un-Signalized Intersection Operations

Intersection capacity analyses were also performed for the un-signalized intersections along the corridor. These analyses were conducted for the a.m. and p.m. peak hours using the traffic volumes illustrated on Figure 3. The results of these analyses are summarized in Table 3

Table 3. Existing Un-Signalized Intersection Operations Summary

Intersection	Movement	AM Peak Hour		PM Peak Hour	
		Average Delay	LOS	Average Delay	LOS
Eastonville Road	Westbound Left	17.5	C	23.2	C
	Westbound Right	9.3	A	13.2	B
	Southbound Left	8.1	A	10.8	B
Owl Place	Eastbound Right	12.1	B	10.6	B
	Northbound Left	10.3	B	9.1	A
Londonderry Drive	Eastbound Left/Through/Right	15.2	C	16.1	C
	Westbound Left	24.7	C	25.7	D
	Westbound Through	10.7	B	13.2	B
	Westbound Right	10.7	B	13.2	B
	Northbound Left	8.1	A	8.3	A
	Southbound Left	7.8	A	8.3	A
Indian Paint Trail	Eastbound Left/Right	11.9	B	13.3	B
	Northbound Left/Through	0.2	A	0.5	A
Rex Road	Eastbound Left/Through/Right	11.7	B	12.2	B
	Westbound Left/Through	23.6	C	26.2	D
	Westbound Right	8.9	A	9.9	A
	Northbound Left	8.3	A	7.8	A
	Southbound Left	7.5	A	7.9	A
Ayer Road	Eastbound Left/Through/Right	12.0	B	15.3	C
	Westbound Left/Through/Right	11.6	B	12.4	B
	Northbound Left/Through/Right	0.4	A	0.5	A
	Southbound Left/Through/Right	0.1	A	0.2	A
Latigo Boulevard	Westbound Left/Right	12.0	B	11.9	B
	Southbound Left/Through	0.2	A	0.3	A
Melba Road	Westbound Left/Right	9.9	A	10.7	B
	Southbound Left/Through	0.2	A	0.3	A

Intersection	Movement	AM Peak Hour		PM Peak Hour	
		Average Delay	LOS	Average Delay	LOS
Milford Road	Eastbound Left/ Right	10.3	B	10.4	B
	Northbound Left/Through	0.4	A	0.2	A
Dawson Road	Westbound Left/Right	9.9	A	10.7	B
	Southbound Left/Through	0.2	A	0.3	A
Brinkerhoff Road	Eastbound Left/ Right	10.3	B	10.4	B
	Northbound Left/Through	0.4	A	0.2	A
Up River Road	Westbound Left/Right	10.3	B	11.1	B
	Southbound Left/Through	0.2	A	0.3	A
Roslyn Road	Eastbound Left/ Right	10.3	B	10.2	B
	Northbound Left/Through	0.4	A	0.2	A
Murphy Road	Westbound Left/Right	10.8	B	10.9	B
	Southbound Left/Through	0.3	A	0.3	A
Woodlake Road	Westbound Left/Right	10.0	A	10.2	B
	Southbound Left/Through	0.3	A	0.4	A
Softwood Road	Eastbound Left/Through/Right	9.7	A	9.7	A
	Westbound Left/Through/Right	9.6	A	9.9	A
	Northbound Left	7.5	A	7.4	A
	Southbound Left/Through	0.3	A	0.4	A
Northcliff Road	Westbound Left/Right	9.9	A	9.9	A
	Southbound Left/Through	0.4	A	0.4	A
Hodgen Road	Eastbound Left/Through/Right	0.6	A	0.6	A
	Westbound Left/Through/Right	2.0	A	1.5	A
	Northbound Left/Through/Right	11.2	B	10.9	B
	Southbound Left/Through/Right	10.3	B	10.2	B

[^1]As seen in the table, movements at the un-signalized intersections along the corridor are operating at LOS D or better.

3.1.5. Existing Deficiencies

The intersections along the existing Meridian Road Corridor are generally operating at LOS C or better during both the a.m. and p.m. peak periods. All of the signalized intersections are operating at LOS C or better overall. All of the critical movements at the un-signalized intersections are operating at LOS C or better with the exception of the westbound left turns at Londonderry Drive and the westbound left/through movements at Rex Road. These three movements are operating at LOS D during the p.m. peak hour. The existing analysis results indicate that there are currently no traffic operational deficiencies along the Meridian Road corridor.

3.2 Design Year 2035 Traffic Volume Projections

The purpose of this section is to document the development of the design year 2035 Average Daily Traffic (ADT) volumes and peak hour intersection turning movement volumes. The traffic volume projections were estimated using data from existing traffic impact studies (TIS) along the corridor and the Pikes Peak Area Council of Governments (PPACG) regional model.
A review of the PPACG model included the model network, zonal data, and volume comparison between the model and traffic impact studies along the corridor. The zonal data from the PPACG model appears reasonable compared to the land uses proposed in existing TIS; however, the traffic volumes from the model were consistently lower than those estimated in existing TIS. The number of lanes coded in the PPACG model for Meridian Road was four from US 24 to Rex Road and two from Rex Road to Hodgen Road.
The 2030 El Paso County Major Transportation Corridors Plan (MTCP) recommendations for long-range improvements on Meridian Road includes six lanes from US 24 to Rex Road, four lanes from Rex Road to Ayer Road and two lanes from Ayer Road to Hodgen Road. A request was made to PPACG for a model run that included the lanes along Meridian Road that are recommended in the MTCP.
The traffic volume projections from the requested model run compared reasonably with the volume projections from existing TIS along the corridor. As a result, a combination of the revised model run and TIS traffic data were used to develop the design year 2035 ADT and peak hour intersection turning movement volumes. The design year 2035 traffic volumes are shown on Figures 4-1 and 4-2.

3.2.1. Design Year 2035 Classification And Lane Requirements

The design year ADT volumes were compared to the maximum service volumes for LOS C from the Florida Department of Transportation's (FDOT) Generalized Level of Service Tables. These tables are based on nationally accepted techniques and were developed using the definitions and methodology of the Highway Capacity Manual 2000. Table 4 shows the maximum service volumes from the FDOT tables.

Table 4. FDOT Generalized Level of Service Table

\# of Lanes	Divided/ Undivided	Level of Service					
		A	B	C	D	E	
2		1,900	11,200	15,400	16,300		
4		$* *$	4,100	26,000	32,700	34,500	
6		$* *$	6,500	40,300	49,200	51,800	

** - Level of Service A cannot be achieved using table input value defaults.

Comparing the LOS C service volume from Table 4 to the ADT volumes on Figures $4-1$ and $4-2$, the following mainline lanes along the Meridian Road Corridor are recommended as follows:

- US 24 to Woodmen Road \rightarrow 4-lane, divided
- Woodmen Road to Londonderry Drive \rightarrow 6-lane, divided
- Londonderry Drive to Dawson Road $\rightarrow 4$-lane, divided
- Dawson Road to Hodgen Road \rightarrow 2-lane, undivided

Upon comparing these lane requirements with MTCP recommendations, it was determined that the following roadway classifications and laneage are necessary for 2035 traffic operation:

- US 24 to Rex Road \rightarrow 6-lane Principal Arterial (Urban)
- Rex Road to Latigo Boulevard $\rightarrow 4$-lane Principal Arterial (Rural)
- Latigo Boulevard to Hodgen Road \rightarrow 2-lane Minor Arterial (Rural)

Overall, the recommendation is to supersede the MTCP classification between Ayer Road and Latigo Boulevard from 2-lane Minor Arterial (Rural) to 4-lane Principal Arterial (Rural). The change in roadway classification will be determined in future updates to the Major Transportation Corridors Plan (MTCP). The ultimate roadway design is based on this modified roadway classification.

3.2.2. Design Year 2035 Traffic Operations

The design year 2035 LOS for the intersections along Meridian Road were estimated using the projected peak hour traffic volumes shown on Figures 4-1 and 4-2. The lane requirements shown in Section 3.2.1 and SYNCHRO 7 analysis software are based on the procedures in the HCM.

3.2.3. Design Year 2035 Signalized Intersection Operations

Intersection capacity analyses were performed for the design year signalized intersections along the Meridian Road corridor. These analyses were conducted for both the a.m. and p.m. peak hours. The results of these analyses are summarized in Table 5.

Table 5. Design Year 2035 Signalized Intersection Operations Summary

Intersection	AM Peak Hour			PM Peak Hour		
	VIC	Average Delay	LOS	VIC	Average Delay	LOS
US 24	1.07	46.0	D	0.92	31.8	C
Rolling Thunder Way ${ }^{1}$	0.56	15.5	B	0.77	22.4	c
Woodmen Road ${ }^{1}$	1.19	52.9	D	1.00	43.9	D
Eastonville Road	0.76	21.3	C	0.85	24.0	C
Bent Grass Meadows Drive	0.70	7.5	A	0.70	12.9	B
Woodmen Hills Drive ${ }^{1}$	0.95	13.1	B	0.83	11.5	B
Stapleton Drive ${ }^{1}$	0.76	26.9	C	0.82	28.9	C
Londonderry Drive	0.63	13.1	B	0.78	19.4	B
Rex Road	0.67	18.5	B	0.70	17.3	B
Ayer Road	0.53	4.4	A	0.79	11.6	B
V/C = Maximum Volume-to-Capacity Ratio LOS = Level of Service Average Delay = Expressed in terms of se ${ }^{1}$ Existing signalized intersection	nds/ven					

As shown in Table 5, all of the existing signalized intersections along the corridor will operate at LOS C or better during the 2035 a.m. and p.m. peak hours with the exception of the Woodmen Road intersection. This intersection is projected to operate at LOS D during both the a.m. and p.m. peak hours.

3.2.4. Design Year 2035 Un-Signalized Intersection Operations

Intersection capacity analyses were also performed for the design year un-signalized intersections along the corridor. These analyses were conducted for the a.m. and p.m. peak hours using the traffic volumes illustrated on Figure 4.1 and 4.2. The results of these analyses are summarized in Table 6.

Table 6. Design Year 2035 Un-Signalized Intersection Operations Summary

Intersection Critical Movement	AM Peak Hour		PM Peak Hour	
	Delay	Los	Delay	Los
Commercial Access				
Eastbound Right	10.5	B	10.4	B
Westbound Right	10.3	B	10.9	B
North Walmart Access				
Eastbound Right	9.2	A	10.0	B
Westbound Right	10.4	B	11.9	B
Owl Place				
Eastbound Right	14.3	B	11.5	B
Tourmaline Drive/Waterbury Drive				
Eastbound Right	12.8	B	11.4	B
Westbound Right	9.3	A	9.3	A
Indian Paint Trail				
Eastbound Right	11.6	B	10.4	B
Antler Ridge Drive				
Westbound Left/Right	19.3	C	20.7	C
Southbound Left/Through	0.2	A	0.4	A
Latigo Boulevard				
Westbound Left/Right	38.0	E	28.1	D
Southbound Left/Through	0.2	A	0.5	A
Melba Road				
Westbound Left/Right	17.6	c	18.9	C
Southbound Left/Through	0.1	A	0.2	A
Milford Road				
Eastbound Left/ Right	20.0	C	16.7	C
Northbound Left/Through	0.2	A	0.1	A
Dawson Road				
Westbound Left/Right	17.6	C	18.9	C
Southbound Left/Through	0.1	A	0.2	A
Brinkerhoff Road				
Eastbound Left/Right	20.0	c	16.7	C
Northbound Left/Through	0.2	A	0.1	A
Up River Road				
Westbound Left/Right	20.2	c	21.4	c
Southbound Left/Through	0.1	A	0.2	A

Intersection Critical Movement	AM Peak Hour		PM Peak Hour	
	Delay	Los	Delay	Los
Roslyn Road				
Eastbound Left/Right	19.9	c	16.3	c
Northbound Left/Through	0.2	A	0.1	A
Murphy Road				
Westbound Left/Right	86.2	F	21.6	C
Southbound Left	8.2	A	9.6	A
Woodlake Road				
Eastbound Left/Through/Right	18.7	c	16.6	c
Westbound Left/Through/Right	35.6	E	22.7	C
Northbound Left	8.5	A	8.1	A
Southbound Left	7.9	A	8.5	A
Softwood Road				
Eastbound Left/Through/Right	16.6	c	18.4	c
Westbound Left/Through/Right	18.5	C	19.5	c
Northbound Left	8.2	A	8.2	A
Southbound Left	7.8	A	8.1	A
Northcliff Road				
Westbound Left/Right	13.6	B	13.6	B
Southbound Left/Through	0.3	A	0.4	A
Hodgen Road				
Eastbound Left	7.6	A	7.5	A
Westbound Left	7.8	A	8.0	A
Northbound Left	40.7	E	25.5	D
Northbound Through/Right	12.3	B	14.0	B
Southbound Left/Through/Right	16.1	C	13.9	B

V/C $=$ Maximum Volume-to-Capacity Ratio
LOS $=$ Level of Service
LOS $=$ Level of Service

As shown in Table 6, all of the critical movements at the un-signalized intersections along the corridor are predicted to operate at LOS D or better during the design year with the following exceptions:

- Latigo Boulevard WB Movements (AM Peak) - LOS E
- Murphy Road WB Movements (AM Peak) - LOS F
- Woodlake Road WB Movements (AM Peak) - LOS E
- Hodgen Road NB Left Movements (AM Peak) - LOS E

The level of service for the movements listed above indicates a potential future need for auxiliary lanes and signalization in the future.

3.3 Intersections/Access

3.3.1. Auxiliary Lane Requirements

Auxiliary lane requirements were determined for the intersections along the Meridian Road corridor. The State of Colorado State Highway Access Code and ECM were used for determining auxiliary lane requirements. The following category assignments were used in determining auxiliary lane requirements for Meridian Road:

- US 24 to Rex Road (45 mph) - Non-Rural Principal Highway (NR-A)
- Rex Road to Hodgen Road (65 mph) - Regional Highway (R-A)

For the category assignment NR-A with a posted speed limit of 45 mph , the following peak hour volume criteria require an auxiliary lane:

- Left Turn Deceleration; volume > 10 vph
- Right Turn Deceleration; volume > 25 vph
- Right Turn Acceleration; generally not required
- Left Turn Acceleration; generally not required

For the category assignment R-A with a posted speed limit of 65 mph , the following peak hour volume criteria require an auxiliary lane:

- Left Turn Deceleration; volume $>10 \mathrm{vph}$
- Right Turn Deceleration; volume $>25 \mathrm{vph}$
- Right Turn Acceleration; volume $>50 \mathrm{vph}$
- Left Turn Acceleration; generally not required

Based on the criteria, Table 7 summarizes the intersections that would require auxiliary turn lanes.

Table 7. Auxiliary Turn Lane Requirements

Intersection Movement	Lane Length Requirement ${ }^{1}$
US 24	
SB Left	550 ft (235 ft decel +200 ft taper +115 ft storage)
SB Right	435 ft (235 ft decel $+200 \mathrm{ft} \mathrm{taper)}$
Commercial Access	
NB Right	435 ft (235 ft decel $+200 \mathrm{ft} \mathrm{taper)}$
SB Right	435 ft (235 ft decel +200 ft taper)
Rolling Thunder Way	
NB Left	585 ft (235 ft decel +200 ft taper +150 ft storage)
NB Right	435 ft (235 ft decel + $200 \mathrm{ft} \mathrm{taper)}$
SB Left	680 ft (235 ft decel +200 ft taper +245 ft storage)
SB Right	435 ft (235 ft decel $+200 \mathrm{ft} \mathrm{taper)}$
South Walmart Access	
NB Left	595 ft (235 ft decel $+200 \mathrm{ft} \mathrm{taper}+160 \mathrm{ft}$ storage)
NB Right	435 ft (235 ft decel + $200 \mathrm{ft} \mathrm{taper)}$
SB Left	$500 \mathrm{ft}(235 \mathrm{ft} \mathrm{decel}+200 \mathrm{ft}$ taper $+65 \mathrm{ft} \mathrm{storage)}$
SB Right	435 ft (235 ft decel +200 ft taper)
North Walmart Access	
NB Right	435 ft (235 ft decel + 200 ft taper)
SB Right	435 ft (235 ft decel $+200 \mathrm{ft} \mathrm{taper)}$
Woodmen Road	
NB Left	$565 \mathrm{ft}\left(235 \mathrm{ft} \mathrm{decel}+200 \mathrm{ft} \mathrm{taper}+130 \mathrm{ft} \mathrm{storage)}{ }^{2}\right.$
NB Right	435 ft (235 ft decel + $200 \mathrm{ft} \mathrm{taper)}$
SB Left	$670 \mathrm{ft}\left(235 \mathrm{ft} \mathrm{decel}+200 \mathrm{ft}\right.$ taper $+235 \mathrm{ft} \mathrm{storage)}{ }^{2}$
SB Right	435 ft (235 ft decel +200 ft taper)
Eastonville Road	
NB Left	$660 \mathrm{ft}(235 \mathrm{ft} \mathrm{decel}+200 \mathrm{ft} \mathrm{taper}+225 \mathrm{ft} \mathrm{storage})^{2}$
NB Right	435 ft (235 ft decel +200 ft taper)
SB Left	535 ft (235 ft decel + 200 ft taper +100 ft storage)
SB Right	435 ft (235 ft decel $+200 \mathrm{ft} \mathrm{taper)}$
Bent Grass Meadows Drive	
NB Left	$600 \mathrm{ft}\left(235 \mathrm{ft} \mathrm{decel}+200 \mathrm{ft} \mathrm{taper}+165 \mathrm{ft}\right.$ storage) ${ }^{2}$
SB Right	435 ft (235 ft decel +200 ft taper)
Woodmen Hills Drive	
NB Left	610 ft (235 ft decel +200 ft taper +175 ft storage)
NB Right	435 ft (235 ft decel + 200 ft taper)
SB Left	$510 \mathrm{ft}(235 \mathrm{ft}$ decel $+200 \mathrm{ft} \mathrm{taper}+75 \mathrm{ft} \mathrm{storage)}$
SB Right	435 ft (235 ft decel $+200 \mathrm{ft} \mathrm{taper)}$

Stapleton Drive	
NB Left	$575 \mathrm{ft}\left(235 \mathrm{ft} \mathrm{decel}+200 \mathrm{ft}\right.$ taper $+140 \mathrm{ft} \mathrm{storage)}{ }^{2}$
NB Right	435 ft (235 ft decel + 200 ft taper)
SB Left	$535 \mathrm{ft}\left(235 \mathrm{ft} \mathrm{decel}+200 \mathrm{ft}\right.$ taper $+100 \mathrm{ft} \mathrm{storage)}{ }^{2}$
SB Right	435 ft (235 ft decel + 200 ft taper)
Tourmaline Drive/Waterbury Drive	
NB Right	435 ft (235 ft decel + $200 \mathrm{ft} \mathrm{taper)}$
SB Right	435 ft (235 ft decel +200 ft taper)
Londonderry Drive	
NB Left	$560 \mathrm{ft}\left(235 \mathrm{ft} \mathrm{decel}+200 \mathrm{ft}\right.$ taper $+125 \mathrm{ft} \mathrm{storage)}{ }^{2}$
NB Right	435 ft (235 ft decel $+200 \mathrm{ft} \mathrm{taper)}$
SB Left	585 ft (235 ft decel $+200 \mathrm{ft} \mathrm{taper}+150 \mathrm{ft}$ storage)
SB Right	435 ft (235 ft decel + 200 ft taper)
Rex Road	
NB Left	$635 \mathrm{ft}\left(235 \mathrm{ft} \mathrm{decel}+200 \mathrm{ft}\right.$ taper $+200 \mathrm{ft} \mathrm{storage)}{ }^{3}$
NB Right	435 ft (235 ft decel $+200 \mathrm{ft} \mathrm{taper)}$
SB Left	875 ft ($500 \mathrm{ft} \mathrm{decel}+300 \mathrm{ft}$ taper $+75 \mathrm{ft} \mathrm{storage)}$
SB Right	800 ft (500 ft decel $+300 \mathrm{ft} \mathrm{taper)}$
Antler Ridge Drive	
NB Right	800 ft (500 ft decel $+300 \mathrm{ft} \mathrm{taper)}$
Ayer Road	
NB Left	900 ft ($500 \mathrm{ft} \mathrm{decel}+300 \mathrm{ft} \mathrm{taper}+100 \mathrm{ft}$ storage)
NB Right	800 ft (500 ft decel $+300 \mathrm{ft} \mathrm{taper)}$
SB Right	720 ft (420 ft decel $+300 \mathrm{ft} \mathrm{taper)}$
Murphy Road	
NB Right	720 ft (420 ft decel + $300 \mathrm{ft} \mathrm{taper} \mathrm{)}$
SB Left	850 ft ($500 \mathrm{ft} \mathrm{decel}+300 \mathrm{ft} \mathrm{taper}+50 \mathrm{ft}$ storage)
Woodlake Road	
NB Left	900 ft (500 ft decel $+300 \mathrm{ft} \mathrm{taper}+100 \mathrm{ft}$ storage)
NB Right	800 ft (500 ft decel $+300 \mathrm{ft} \mathrm{taper)}$
SB Left	825 ft ($500 \mathrm{ft} \mathrm{decel}+300 \mathrm{ft}$ taper $+25 \mathrm{ft} \mathrm{storage)}$
SB Right	800 ft (500 ft decel $+300 \mathrm{ft} \mathrm{taper)}$
Softwood Road	
NB Left	925 ft (500 ft decel $+300 \mathrm{ft} \mathrm{taper}+125 \mathrm{ft} \mathrm{storage)}$
SB Right	800 ft (500 ft decel $+300 \mathrm{ft} \mathrm{taper)}$
Hodgen Road	
NB Left	$550 \mathrm{ft}\left(300 \mathrm{ft} \mathrm{taper}+250 \mathrm{ft} \mathrm{storage)}{ }^{4}\right.$

1
${ }_{2}$ Taper lengths based on ECM requirements
${ }_{3}$ Storage requirement based on double left turn
Storage requirement based on double left turn indicated in TIS

3.3.2. Spacing

The ECM provides criteria for spacing of roads according to functional classification. The applicable criteria for Meridian Road classifications are as follows.

- Principal arterial: $1 / 2$ mile between full movement intersections
- Minor arterial: $1 / 4$ mile between full movement intersections

There are 25 public roads that intersect Meridian Road. The eight road segments shown in Table 8 do not meet the ECM spacing criteria.

Table 8. Full Movement Intersection Spacing Deficiencies

Functional Classification	Adjacent Roads	Distance Apart	Variance with ECM Spacing Criteria $1 / 2$ mile (2640 ft)
6-lane Principal Arterial	US 24 and Rolling Thunder Way	1925 ft	715 ft
	Rolling Thunder Way and Woodmen Road	2125 ft	515 ft
	Woodmen Road and Eastonville Road	1275 ft	1365 ft
	Indian Paint Trail and Rex Road	2100 ft	540 ft
4-lane Principal Arterial	Antler Ridge Drive and Ayer Road	2225 ft	415 ft
Functional Classification	Adjacent Roads	Distance Apart	Variance with ECM Spacing Criteria $1 / 4$ mile (1320 ft)
2-lane Rural Minor Arterial	Melba Road and Milford Road	1300 ft	20 ft
	Brinkerhoff Road and Up River Road	1225 ft	95 ft
	Roslyn Road and Murphy Road	625 ft	695 ft

3.4 Safety Issues

3.4.1. Existing Condition

Meridian Road stretches from a rapidly growing urban area on the south end to a rural environment on the north end. US 24 is not currently connected to Meridian Road. Once connected, traffic will increase significantly as vehicles access the planned and existing commercial properties located between US 24 and Woodmen Road from both the north and south. Aside from the $3 / 4$ movement intersection that enables a left turn into the southern Meridian Market View access, north- and southbound vehicles traveling to and from these commercial properties are limited to RI/RO accesses that are clearly defined by concrete islands. Signage and striping provides directional guidance to drivers approaching the Meridian Road and Woodmen Road intersection from either direction.

A median divides north- and southbound Meridian Road from US 24 to Stapleton Drive. North of Woodmen Road, the corridor is a divided 4-lane arterial with few private accesses. The area is considered urban as parcel sizes are typically less than $21 / 2$ acres. Neighborhoods access Meridian Road via wellspaced local and collector roads. The south end of Meridian Road is relatively flat, thus providing good visibility of upcoming intersections and oncoming traffic to drivers. The four signalized intersections are warranted by the traffic volumes attributed to the higher density, urban end of the corridor.
The roadway tapers down to a 2-lane minor arterial south of Londonderry Drive. North of Rex Road, the frequency of private access points increases as the landscape becomes rural with larger residential parcels replacing dense, residential neighborhoods. All access points from Rex Road to Hodgen Road are full movement.
Wildlife unexpectedly crossing the road is a threat along the entire corridor. The north end of Meridian Road is rural, and the open land and forested areas provide an ideal environment for the various species that are prevalent in this region. North of Ayer Road, the corridor is lined with trees that may block a driver's view of wildlife adjacent to and heading for the roadway.

3.4.2. Crash Data

An analysis of CDOT crash data shows that there were 158 crashes in the project area from 2001 through 2005. Fifty-eight percent of the crashes resulted in property damage only and 42% resulted in injuries. There were no fatalities during the five-year period. The data shows that 66% of the crashes occurred during daylight hours and 25% occurred at night on the unlit portions of the corridor. Sixty-five percent occurred on dry roads. Crashes during poor road conditions occurred along the entire corridor and did not trend toward any specific areas. Seventy-five percent happened with no inclement weather conditions present and 18% occurred under snow/sleet/hail conditions.
As shown in Figure 5, the highest concentration of crashes occurred at or near the Meridian Road intersections with Woodmen Road, US 24, and Woodmen Hills Drive. Seventeen of the 35 crashes at or near Woodmen Road were rear-end collisions with nine on the Woodmen leg and eight on the Meridian leg. Nine of the 15 crashes at the Woodmen Hills intersection were broadsides. The crashes located at the intersections with US 24 and Tamlin Road were included in the analysis even though Meridian Road alignment no longer intersects those roadways at those locations.

The most frequently occurring crash types were rear-end collisions (23\%) and hitting a fixed object (22\%). Fixed objects include fences, trees, signs, guardrails, light/utility poles, and other non-specified objects.

Other higher frequency crash types were broadsides (15\%), vehicle overturning (12\%), and vehicle hitting a wild animal (11\%). Table 8 shows the more commonly occurring crash types and the proximity to an intersection.

Rear-end collisions commonly occur during periods of congestion. Broadside collisions may indicate a need for traffic control measures. Adverse weather conditions can contribute to the number of overturning accidents and fixed object collisions. Seven of the 19 overturning accidents along the corridor occurred during snow/sleet/hail with snowy, icy, or slushy road conditions. Elk, deer, antelope, fox, coyote and other species are prevalent in this area and may dart into traffic unpredictably at any time along the corridor.

Driver impairment (drugs or alcohol) and contributing factors (emotional, mental, or other distractions) were also analyzed. Alcohol impairment was noted in 3% of the crashes, no impairment was cited in 93%, and impairment was unknown or not observed in the remaining 4%. Sixty-six percent of the crashes had no apparent driver factors, while inexperienced and preoccupied drivers were cited in 14% and 12%, respectively.

Figure 5. Crashes by Nearest Cross Street

Table 9. Most Frequently Occurring Crash Types from 2001-2005

Crash Type	At or Near Intersection	Non-intersection	At Driveway Access	Total
Rear-end	27	10	-	37
Fixed object (fence, tree, sign, guard rail, light/utility pole, other)	5	30	-	35
Broadside	20	-	3	23
Overturning	2	17	-	19
Approach turn	7	-	1	8
Wild animal	-	8	-	8
Head-on	-	5	1	6
Overtaking turn	1	2	2	-
Source: CDOT	62	72	7	136

Source: CDOT

4.0 Utilities

4.1 Existing Utilities

Several utility companies use the Meridian Road Corridor for existing underground utilities parallel to existing roadway right-of-way. Some utilities cross the Meridian Road Corridor at several locations. Table 10 lists each utility company and utility type currently located within the Meridian Road Corridor
Table 10. Existing Utility Companies

Utility Company	Utility Type
Meridian Services Metropolitan District	Water and/or Sanitary
Woodmen Hills Metropolitan District	Water and/or Sanitary
Falcon Hills Metropolitan District	Water and/or Sanitary
Paint Brush Hills Metropolitan District	Water and/or Sanitary
Nustar (formerly Valero)	Petroleum
Black Hills (formerly Aquila)	Natural Gas
Mountain View Electric	Electric
Comcast	Television and/or Fiber Optics
Qwest	Telephone and/or Fiber Optics
Falcon Broadband Inc.	Fiber Optics
Springs Utilities	Gas

4.1.1. Potential Utility Conflicts

The proposed roadway improvements to Meridian Road will create potential conflicts with the existing utilities. Figures 6-1 through 6-10 show the proposed limits of the Meridian Road improvements, existing utilities, existing utility easement information (where available), and the preliminary alignments and easements. Table 11 summarizes the existing utilities along Meridian Road, grouped by roadway segment.

MERIDIAN ROAD (NORTH)

EXISTING UTILITIES

 SANTIARY SEWER LINE

Table 11. Existing Utilities

Meridian Road Segment	Utility					
	Gas	Electric	Water	Sanitary	Fiber	Other
South of US 24 to just north of Woodmen Road	A gas line is adjacent to Woodmen Road and crosses Meridian Road. A low pressure gas line also parallels Meridian Road.	An underground electric line is adjacent to Woodmen Road and crosses Meridian Road.	Two water lines cross Meridian near construction limits. An 8 in line parallels down the center of Woodmen Road and crosses Meridian Road.	A sanitary sewer line is adjacent to Woodmen Road and crosses Meridian Road.	Three fiber optic lines parallel the south side of Woodmen Road and cross Meridian.	NuStar petroleum line is parallel to Meridian Road, on the west side to west on Woodmen Road.
Woodmen Road north to Woodmen Hills (including the Woodmen Road/Meridian Road intersection)	A parallel gas line runs from Owl Place to Woodmen Hills Drive, crosses Meridian and continues down the center of Woodmen Hills Drive in an easterly direction. Along the westerly edge of the southbound lanes, a gas line runs from the intersection to Woodmen Hills Drive.	An underground electric line crosses Meridian Road north of the intersection of Woodmen Road, crosses Woodmen Road and continues along the eastern edge of Meridian Road. An underground electric line crosses Meridian Road south of the intersection of Woodmen Road, and parallels Meridian Road along the eastern edge. Just north of Woodmen Road, the underground electric splits and runs parallel for about 300 ft ; one line serves an adjacent neighborhood, the other crosses Meridian Road. Overhead electric runs parallel to Meridian along the westerly edge of the road.	Two water lines cross Meridian Road north of the intersection of Woodmen Road. A water line parallels Meridian in the center until it crosses west at Owl Place.	A sanitary sewer line parallels Meridian starting about 500 ft north of the Woodmen /Meridian intersection and continues along the eastern edge of Meridian past Woodmen Hills Drive.	Two fiber optic lines cross Meridian Road south of the intersection of Woodmen Road and parallel Meridian Road along the eastern edge. Fiber optic parallels the water line and continues to Woodmen Hills Drive and then crosses Meridian Road. A second fiber optic line parallels the first line on the east until approximately 800 ft south of Woodmen Hills Drive. A fiber optic line crosses Meridian Road north of the intersection of Woodmen Road.	A telephone line crosses Meridian Road north of the intersection of Woodmen Road, crosses Woodmen Road and continues along the eastern edge of Meridian Road. A telephone line crosses Meridian Road south of the intersection of Woodmen Road and parallels Meridian Road along the eastern edge. NuStar petroleum line crosses Meridian about 250 ft north of Woodmen Road.
Woodmen Hills Drive north to Stapleton Road	No gas in this section.	Overhead electric runs parallel to Meridian along the westerly edge of the road. An underground electric line runs parallel to Meridian near the intersection of Stapleton Rd and Meridian.	A water line crosses Meridian Rd at Woodmen Hills Drive. A water line crosses Meridian about 200 ft north of Woodmen Hills Drive and then runs parallel to Meridian for about 1000 ft north to Stapleton Rd and then heads east on Stapleton Road.	A sanitary sewer line parallels Meridian along the eastern edge to just south of Stapleton Road. A sanitary sewer line crosses Meridian at Stapleton Road.	North of Woodmen Hills Drive, a fiber optic line parallels the north bound lanes of Meridian Road, stopping short of Stapleton Road. A second fiber optic line runs in the median of Meridian Road about midway of this section. A fiber optic line crosses Meridian Road just south of Stapleton Road.	North of Woodmen Hills Drive, a television line parallels the north bound lanes of Meridian Road, stopping short of Stapleton Road. Two telephone lines cross Meridian Road north of Woodmen Hills Drive.

Meridian Road Segment	Utility					
	Gas	Electric	Water	Sanitary	Fiber	Other
Stapleton Road north to Rex Road	A gas line trending east/west crosses Meridian Road north of Londonderry Drive. A gas line runs along the eastern edge of the road, crosses Rex Road, and turns west to connect to a gas line that runs down the center of Meridian Road for about 1,100 ft until veering to the eastern edge of Meridian Road to just south of Latigo Blvd. A gas line runs parallel to the eastern edge of Meridian from just south of Rex Road, crosses Rex Road than heads north on Meridian.	Overhead electric runs parallel to Meridian along the westerly edge of the road. South of Londonderry Drive, a section of underground electric crosses Meridian Road, then crosses Londonderry Drive on the east side of Meridian Road and turns north to parallel Londonderry Drive. Approximately 200 ft south of the intersection of Rex Road, an underground electric line crosses Meridian Road.	No water in this section.	No sewer in this section.	Two fiber optic lines run parallel to Meridian Road north of Stapleton Road: one runs down the middle of the roadway until Londonderry Drive where it shifts to the eastern edge of the roadway, where the shift occurs and spur feeds to the east (around Londonderry Drive); the second line crosses Meridian Road in an easterly direction at Londonderry Drive, and parallels Londonderry Drive along the south edge. Approximately 800 ft north of Stapleton Road, a fiber optic line crosses Meridian Road connecting the two lines. At the intersection of Rex Road, a fiber optic line crosses Meridian Road on the south side and then crosses Rex Road on the east side.	A telephone line runs along the western edge of Meridian from just south of Indian Paint Trail to just past Rex Road.
Rex Road north to Latigo Boulevard	Continuing north from Rex Road, a gas line runs in the middle of the roadway for about $1,100 \mathrm{ft}$ before veering to the edge of the roadway, continuing north, crossing Antler Ridge Drive, another access point before jogging east and immediately north again before stopping at the intersection of Ayer Road.	There are three underground electrical crossings: one about 400 ft south of Antler Ridge Drive, one just south of Antler Ridge Drive (at the intersection), and one north of Ayer Road (north of the intersection). Overhead electric runs parallel to Meridian along the westerly edge of the road then crosses Meridian north of Ayer Road and runs parallel to Meridian along the easterly edge of the road.	No water in this section.	No sewer in this section.	A fiber optic line runs north of Ayer Road along the western edge of Meridian Road for about $1,500 \mathrm{ft}$. A fiber optic line crosses Meridian Road about 300 ft north of the last line and runs along the western edge of the roadway until just short of Latigo Boulevard.	A telephone line runs along the western edge of the roadway from Rex Road and terminates at the first major access point to the north, resuming again at the intersection of Antler Ridge Drive, paralleling Meridian Road on the western edge for about 850 ft before turning east and crossing Meridian Road and heading north again to the intersection of Ayer Road. A small section of telephone line exists on the southwest corner of the intersection of Ayer Road and Meridian Road. A telephone line runs parallel to the fiber optic and stops at the same location.

4.2 Existing Utility Easements

During this study, each utility company was asked to provide available utility easement information in addition to the location information they were providing. Several of the utility companies provided verbal information about the existing easement widths and locations. All easement information received from the utility companies shall be verified by title searches during the design phase. Table 12 provides a summary of the easement information received to date.

Table 12. Existing Utility Easements

Utility Company	Easement Width	Easement Location
Public Utilities and Drainage Easement, Trail and Roadway Improvements	20^{\prime} to 22^{\prime}	North of Rolling Thunder Way to south entrance of WalMart on west side of Meridian Road
Public Utilities and Drainage Easement	20^{\prime} to 30^{\prime}	North side of south entrance into WalMart to Woodmen Road on west side of Meridian
Public Utilities and Drainage Easement	10^{\prime}	Meridian Road Station 35+75 to Station 42+25 on east side
Public Utilities and Drainage Easement	20^{\prime}	Meridian Road Station 42+25 to Woodmen Road on east side
Electric Easement (Mountain View)	20^{\prime}	Along the north side of Woodmen Road
Electric Easement (Mountain View	20^{\prime}	Parallel to Meridian Road from Station 48+00 to 356+00
Nustar Gas line	20^{\prime}	Perpendicular to Meridian Road Station 48+61
Electric Easement (Mountain View Electric)	20^{\prime}	Woodmen Road Station 48+00 to Station 356+00
Public Utilities and Drainage Easement	20^{\prime}	Meridian Road from north side of Woodmen Road to south side of Eastonville Road on east side
Public Utility Easement	10^{\prime}	Meridian Road Station 57+19 to Meridian Road Station $70+42$, west side
Public Utilities, Drainage and Trail Easement	20^{\prime}	Meridian Road Station 79+69 to south side Woodmen Hills Drive on east side
Electric Easement (Mountain View)	20^{\prime}	Along north side of Woodmen Hills Drive, Meridian Road station 97+32
Public Utilities, Drainage and Trail Easement	20^{\prime}	Meridian Road from north side of Woodmen Hills Drive to Meridian Road Station 110+09, east side
Public Utilities, Drainage and Landscape Easement	Meridian Road Station 110+09 to Meridian Road Station $148+65, ~ e a s t ~ s i d e ~$	
Electric Easement (Mountain View)	$40^{\prime} \times 30^{\prime}$	Meridian Road Station 150+23 to Station 150+52 in existing roadway
Electric Easement (Mountain View)	$14^{\prime} \times 37^{\prime}$	North side of Stapleton Road
Utility, Drainage and Roadway Improvements Easement	Meridian Road from north side of Stapleton Road to south side of Tourmaline Drive, east side	

Utility Company	Easement Width	Easement Location
Utility, Drainage and Roadway Improvements Easement	20'	Meridian Road from north side of Tourmaline Drive to south side of Londonderry Drive, east side
Utility, Drainage and Roadway Improvements Easement	20'	Meridian Road from north side of Londonderry Drive to south side of Rex Road, east side
Utility, Drainage and Roadway Improvements Easement	20'	Meridian Road from north side of Rex Road to Meridian Road Station 255+63, east side
Electric Easement (Mountain View)	$40^{\prime} \times 20^{\prime}$	Meridian Road Station 229+31 in existing roadway
Electric Easement (Mountain View)	$40^{\prime} \times 10^{\prime}$	Meridian Road Station $254+73$ in existing roadway
Utility and Drainage Easement	20^{\prime}	Meridian Road Station $255+63$ to Station 268+62, west side
Utility and Drainage Easement	10'	Station 255+63 to south side of Antlers Ridge Drive, east side of Meridian Road
Electric Easement (Mountain View)	10'	Perpendicular to Meridian Road from Station 268+42 to Station 268+52
Utility and Drainage Easement	10'	Meridian Road Station 268+81 to south side of Ayers Road, east side
Electric Easement (Mountain View)	20'	Meridian Road Station 268+82 to Station 282+05, west side
Electric Easement (Mountain View)	20'	North side of Woodmen Road to Meridian Road Station $50+47$ on east side
Public Utility and Drainage Easement	10'	North side of Eastonville Road to Station 77+68 on east side
Public Utility, Drainage and Roadway Improvements Easement	20^{\prime}	Meridian Road Station 148+65 to Stapleton Drive on east side
Public Utility and Drainage Easement	10'	Meridian Road Station 83+64 to south side of Woodmen Hills Drive on west side
Electric Easement (Mountain View Electric)	20'	North side of Woodmen Hills Drive to Meridian Road Station 99+84 on west side
Public Utility and Drainage Easement	10'	Meridian Road Station 99+84 to Station 123+31 on west side
Public Utility and Drainage Easement	10'	Meridian Road Station 163+45 to Station 175+51 on west side
Public Utility and Drainage Easement	10'	Meridian Road Station 178+24 to 185+96 on west side
Public Utility Easement	10'	Meridian Road Station 202+70 to south side of Indian Point Trail on west side
Public Utility Easement	10'	North side of Indian Point Trail to south side of Rex Road on west side
Electric Easement (Mountain View Electric)	10'	Meridian Road Station 202+70 to Rex Road on west (1/2 in ROW)
Public Utility and Drainage Easement	20'	Meridian Road Station 268+82 to south side of Ayers Road on west side
Public Utility Easement	10'	Meridian Road Station 308+41 to south side of Latigo Boulevard on east side

[^0]: K-factor $=$ Percentage of the daily volume occurring during the peak hour

[^1]: OS = Maximum Volume
 LS $=$ Level of Service
 Average Delay $=$ Expressed in terms of seconds/vehicle

